陈建华
男,1988年11月出生,讲师,硕士生导师,博士研究生学历,2018年博士毕业于中南大学,联系方式:cjh19881129@163.com。国际差分方程学会会员、美国数学会《Mathematics Reviews》评论员,2018年7月进入到南昌大学数学系工作,2019年入选南昌大学“215人才工程”赣江青年学者。主讲本科生《高等数学》、研究生《极小极大定理》、《线性算子谱分析》等课程。主要研究领域:非线性分析,包括变分方法与临界点理论、不动点理论及其在微分方程与积分方程中的应用。研究成果主要发表在Front. Math. China、Asymptotic Anal.、Acta Math. Sci. Ser. B.、J. Math. Phys.、Topol. Meth. Nonlinear Anal.、 Commun. Pure Appl. Anal.、J. Fixed Point TheoryAppl.、Math. Meth. Appl. Sci.、J. Comput. Appl. Math.等国际知名期刊上。同时担任J. Math. Phys.、 Adv. Nonlinear Anal.、 Discrete Contin. Dyn. Syst. Ser. B.、Math. Meth. Appl. Sci.、 Complex Var. Elliptic Equ.、Math. Meth. Appl. Sci.、J. Comput. Appl.Math.、Comput. Math. Appl.、Appl. Math. Lett.等期刊审稿人。
主持项目:
1、几类拟线性薛定谔方程解的存在性与动力学分析,国家自然科学基金,2020-01至2022-12,26万元, 在研, 主持
2、含Choquard非线性项的广义拟线性薛定谔方程解的存在性与动力学分析,江西省自然科学基金,2021-01至2023-12, 6万元, 在研, 主持
主要论文:
1、Chen Jianhua; Huang Xianjiu; Cheng Bitao; Combined effects of concave and convex nonlinearities for Kirchhoff type equations with steep potential well and 1<p<2<q<4, Frontiers of Mathematics in China, 2021, In press
2、Chen Jianhua; Huang Xianjiu; Qin Dongdong; Cheng Bitao;Existence and asymptotic behavior of standing wave solutions for a class of generalized quasilinear Schrödinger equations with critical Sobolev exponents, Asymptotic Analysis, 2020, 120: 199-248.
3、Chen Jianhua; Huang Xianjiu;ChengBitao;TangXianhua;Existence and concentration behavior of ground State solutions for a class of generalized quasilinear Schrödinger equations in RN, Acta Mathematica Scientia Series B. 2020, 40:1495-1524.
4、Chen Jianhua; Huang Xianjiu; Cheng Bitao; Zhu Chuanxi; Some results on standing wave solutions for a class of quasilinear Schrӧdinger equations, Journal of Mathematical Physics, 2019, 60: 091506.
5、Chen Jianhua; Tang Xianhua; Cheng Bitao; Existence of ground state solutions for a class of quasilinear Schrödinger equations with general critical nonlinearity, Communications on Pure and Applied Analysis, 2019, 18 : 493-517.
6、Chen Jianhua; Tang Xianhua; Cheng Bitao; Existence and nonexistence of positive solutions for a class of generalized quasilinear Schrӧdinger equations involving a Kirchhoff-type perturbation with critical Sobolev exponent, Journal of Mathematical Physics,2018, 59: 021505.
7、Chen Jianhua; Tang Xianhua; Cheng Bitao; Existence and concentration of ground state sign-changing solutions for Kirchhoff type equations with steep potential well and nonlinearity, Topological Methods in Nonlinear Analysis, 2018, 15:111-133.
8、ChenJianhua; Tang Xianhua; Gao Zu; Cheng Bitao; Ground state sign-changing solutions for a class of generalized quasilinear Schrödinger equations with aKirchhoff-type perturbation, Journal of Fixed Point Theory and Applications, 2017, 19:3127-3149.
9、Chen, Jianhua; TangXianhua; GaoZu;Existence of ground state sign‐changing solutions for p‐Laplacian equations of Kirchhoff type, Mathematical Methods in the Applied Sciences, 2017, 40:5056-5067.
10、ChenJianhua; Tang Xianhua; Generalizations of Darbo’s fixed point theorem via simulation functions with application to functional integral equations, Journal of Computational and Applied Mathematics, 2016, 296: 564-575.