彭振华
男,1989年9月出生,讲师,硕士生导师,2019年12月博士毕业于武汉大学。联系方式:zhenhuapeng@whu.edu.cn或zhenhuapeng@ncu.edu.cn。担任德国《ZentralblattMATH.》和美国《MathematicalReviews》评论员,于2021年8月入选南昌大学香樟育才计划。主要研究方向为大数据优化与人工智能。所涉应用领域有金融市场的均衡决策、投资组合问题、能源系统、机器学习、区块链技术、旅行商问题、6G通信网络等。
教育背景:
2016.9-2019.12,武汉大学数学与统计学院,博士。
2012.9-2015.7,南昌大学理学院,硕士。
2008.9-2012.7,黄山学院数学与统计学院,学士。
工作经历:
2019.12-现在 南昌大学理学院 教师
2018.10- 2019.12 香港理工大学 研究助理
科研项目:
1.双层向量优化问题的理论、算法及其在机器学习中的应用研究, 国家自然科学基金委员会, 青年项目, 项目批准号:12001260, 2021.1-2023.12, 主持,在研。
2.双层优化问题的某些机理分析及相关求解策略研究,国家自然科学基金委员会, 面上项目, 项目批准号:11871383, 2019.1-2022.12, 第三主要参与者,在研。
3.面向超密集用户群体的高谱效高能效大规模接入通信网络的优化设计,国家自然科学基金委员会, 地区项目, 项目批准号:62161024,2022.1-2025.12,主要参与者,在研
4.基于统计学习和区块链技术的下一代大规模接入通信网络的优化研究, 计算机体系结构国家重点实验室开放课题, 项目批准号:CARCHB202019,2020.11-2022.10,第二主要参与者,在研。
论文代表作:
1. Zhenhua Peng*, Zhongping Wan, Yujia Guo. New higher-order weak lower inner epiderivatives and application to Karush–Kuhn–Tucker necessary optimality conditions in set-valued optimization. Japan Journal of Industrial and Applied Mathematics, 2020,(SCI)
2. Zhenhua Peng*, Zhongping Wan. Second-order composed contingent derivative of the perturbation map in multiobjective optimization. Asia-Pacific Journal of Operational Research, 2020, 37: 2050002. (SCI).
3. Chao Jiang, Zhongping Wan, Zhenhua Peng*. A new efficient hybrid algorithm for large scale multiple traveling salesman problems. Expert Systems with Applications, 2020, 139: 112867. (SCI)
4. Zhenhua Peng*, Zhongping Wan and Weizhi Xiong, Sensitivity Analysis in Set-Valued Optimization Under Strictly Minimal Efficiency, Evolution Equations and Control Theory, 2017, 6(3): 427–436.(SCI)
5. Zhenhua Peng and Yihong Xu*, New Second-Order Tangent Epiderivatives and Applications to Set-Valued Optimization, Journal of Optimization Theory and Applications, 2017 , 172(1): 128–140.(SCI)
6. Zhenhua Peng* and Zhongping Wan, Second-Order Karush-Kuhn-Tucker Optimality Conditions for Set-Valued Optimization Subject to Mixed Constraints, Results in Mathematics, 2018. 73: 101.(SCI)
7. Zhenhua Peng and Yihong Xu*, Second Order Optimality Conditions for Conesubarcwise Connected Set-valued Optimization Problems, Acta Mathematicae Applicatae Sinica, English Series, 2018, 34: 183–196.(SCI)
8. Yihong Xu and Zhenhua Peng*, Second-Order M-Composed Tangent Derivative and Its Applications, Asia-Pacific Journal of Operational Research, 2018, DOI: 10.1142/S021759591850029X.(SCI)
9. Yihong Xu and Zhenhua Peng*, Higher-Order Kuhn-Tucker Optimality Conditions for Set-Valued Optimization, Pacific Journal of Optimization, 2018, 14(2): 327–347.(SCI)
10. Yihong Xu and Zhenhua Peng, Higher-Order Sensitivity Analysis in Set-Valued Optimization Under Henig Efficiency, Journal of Industrial and Management Optimization, 2017, 13(1): 313-327.(SCI)