王建辉简介


2021-12-15



王建辉,男,1980年7月出生,江西修水人。 2010年获得复旦大学理学博士学位,现为南昌大学理学院物理系教授、博士生导师,南昌大学俊才学者,全国统计物理与复杂系统学术委员会委员。研究方向为量子热力学和非平衡统计物理,目前集中在量子开放系统的热力学及统计性质的基础研究。主持(完成)国家自然科学基金4项,主持江西省自然科学基金2项,第一作者或通讯作者发表SCI论文40余篇,其中Phys. Rev.系列文章20余篇。

Email: wangjianhui@ncu.edu.cn

近5年来主持科研项目

1、随机热机的热力学性质,国家自然科学基金面上项目, 60万元, 2019.01-2022.12;

2、以有限系统为工质的量子热力学循环性能的理论研究, 国家自然科学基金,18万元,2016.01-2018.12;

3. 有限玻色系统的临界行为研究,国家自然科学基金, 56万元, 2013.01-2016.12;

4. 基于微/纳尺度体系的量子热装置的性能研究, 江西省青年重点基金, 20万元, 2016.01-2018.12.

部分论文(*通讯作者)(全部论文见URL:https://publons.com/researcher/O-3859-2015)

  1. G. Q. Jiao, Y. L. Xiao, J. Z. He, Y. L. Ma, and J. H. Wang*, Quantum Otto refrigerators in finite-time cycle period, New J. Phys. 23, 063075 (2021).

  2. G. Q. Jiao, S. B. Zhu, J. Z. He, Y. L. Ma, and J. H. Wang*, Fluctuations in irreversible quantum Otto engines, Phys. Rev. E 103, 032130 (2021)

  3. Y. Y. Hong, Y. L. Xiao, J. Z. He, and J. H. Wang*, Quantum Otto engine working with interacting spin systems: Finite power performance in stochastic thermodynamics, Phys. Rev. E 102, 022143 (2020).

  4. Q. Liu, J. Z. He, Y. L. Ma, and J. H. Wang*, Finite-time performance of quantum heat engines in linear response regime, Phys. Rev. E 100, 012105 (2019).

  5. J. H. Wang*, Y. L. Ma, and J. Z.He, Finite-time performance of a quantum heat engine with a squeezed thermal bath, Phys. Rev. E 100, 052126 (2019).

  6. H. H. Wang, J. Z. He, and J. H. Wang*, Endoreversible quantum heat engines in the linear response regime, Phys. Rev. E 96, 012152.

  7. Z. L. Ye, Y. Hu, J. Z. He, andJ. H. Wang*, Universality of maximum-work efficiency of a cyclic heat engine based on a finite system of ultracold atoms, Sci. Rep. 7, 6289 (2017).

  8. H. H. Wang, J. Z. He, J. H. Wang*, and Z. Q. Wu, Efficiency at maximum power for an Otto engine with ideal feedback, J. Appl. Phys. 120, 154303 (2016).

  9. J. H. Wang*, Y. M. Lai, Z. L. Ye, J. Z. He, Y. L. Ma, and Q. H. Liao, Four-level refrigerator driven by photons, Phys. Rev. E 91, 050102(R) (2015).

  10. J. H. Wang*, Z.Ye, Y. Lai, W. Li, and J. He, Efficiency at maximum power of a quantum heat engine based on two coupled oscillators, Phys. Rev. E 91, 062134 (2015).

  11. J. H. Wang*, Y. L. Ma, and J. Z.He, Quantum-mechanical engines working with an ideal gas with a finite number of particles confined in a power-law trap, Eur. Phys. Lett. 111, 20006 (2015).

  12. F. Wu, J. Z. He, Y. L. Ma, and J. H. Wang*, Efficiency at maximum power of a quantum Otto engine within finite-time or irreversible thermodynamics and finite-time thermodynamics, Phys. Rev. E 90, 062134 (2014).

  13. Y. Yuan, R. Wang, J.He, Y. Ma, and J. H. Wang*, Coefficient of performance under maximum \chi criterion in a two-level atomic system as a refrigerator, Phys. Rev. E 90, 052151 (2014).

  14. Y. Hu, F. Wu, Y. Ma, J. He, and J. H. Wang*,, A. Calvo Hernandez, and J. M. M. Roco, Coefficient of performance for a low-dissipation Carnot-like refrigerator with nonadiabatic dissipation, Phys. Rev. E 88, 062115 (2013).

  15. R. Wang, J. H. Wang*, J. Z. He, and Y. L. Ma, Efficiency at maximum power of a heat engine working with a two-level atomic system, Phys. Rev. E 87, 042119 (2013).

  16. J. H. Wang*, Z. Q. Wu, and J. Z. He, Quantum Otto engine of a two-level atom with single-mode fields, Phys. Rev. E 85, 041148 (2012).

  17. J. H. Wang* and J. Z. He, Efficiency at maximum power output of an irreversible Carnot-like cycle with internally dissipative friction, Phys. Rev. E 86, 051112 (2012).

  18. J. H. Wang*, J. Z. He, and Z. Q. Wu, Efficiency at maximum power output of quantum heat engines under finite-time operation, Phys. Rev. E 85, 031145 (2012).

  19. R. Wang, J. H. Wang*, J. Z. He, and Y. L. Ma, Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system, Phys. Rev. E 86, 021133 (2012).

  20. J. H. Wang*, J. Z. He, and X. He, Performance analysis of a two-state heat engine of a single-mode radiation field in a cavity, Phys. Rev. E 84, 041127 (2011).

  21. J. H. Wang*, J. Z. He, and Y. L. Ma, Condensate fluctuations of weakly interacting Bose gases within a microcanonical ensemble, Phys. Rev. E 83, 051132 (2011).

  22. J. H. Wang and Y. L. Ma*, Trap-size scaling of finite Bose systems within an exact canonical ensemble, Ann. Phys. 326, 634 (2011).

  23. J. H. Wang and Y. L. Ma*, Thermodynamics and finite-size scaling of homogeneous weakly interacting Bose gases with an exact canonical statistics, Phys. Rev. A 79 , 033604 (2009).

南昌大学数学与计算机学院

School of Mathermatics and Computer Sciences,Nanchang Uniersity


地址:南昌大学前湖校区理科生命大楼A区四楼

电话:0791-83969506

邮箱:@ncu.edu.cn

常用链接


南昌大学

南昌大学图书馆

南昌大学招生与就业工作处

学院微信公众号